|
|
|
↓ ABCD schemes
|
|
References
The following list contains some selected references from the literature to the described methods and their construction.
-
W. Auzinger, H. Hofstätter, D. Ketcheson, O. Koch,
Practical splitting methods for the adaptive integration of nonlinear evolution equations.
Part I: Construction of optimized schemes and pairs of schemes,
BIT Numer. Math. 57(1) (2017), 55-74.
- W. Auzinger, W. Herfort,
Local error structures and order conditions in terms of Lie elements for exponential splitting schemes,
Opuscula Mathematica 34 (2014), 243-255.
-
W. Auzinger, O. Koch, M. Thalhammer,
Defect-based local error estimators for high-order splitting methods involving three linear operators,
Numer. Algorithms 70 (2015), 61-91.
-
S. Blanes, S., Casas, F., P. Chartier, A. Murua,
Optimized high-order splitting methods for some classes of parabolic equations,
Math. Comp. 82 (2013), pp.1559-1576.
-
S. Blanes, S., P.C. Moan,
Practical Symplectic Partitioned Runge-Kutta and Runge-Kutta-Nyström Methods,
J. Comput. Appl. Math. 142 (2002), pp. 313-330.
-
F. Castella, P. Chartier, S. Descombes, G. Vilmart,
Splitting methods with complex times for parabolic equations,
BIT Numer. Math. 49 (2009), pp. 487-508.
-
J. Chambers,
Symplectic integrators with complex time steps,
AJ 126 (2003), pp. 1119-1126.
-
W. Kahan, S., R.-C. Li,
Composition constants for raising the order of unconventional schemes for ordinary differential equations,
Math. Comp. 66 (1997), pp. 1089-1099.
-
H. Yoshida,
Construction of higher order symplectic intergrators,
Phys. Lett. A 150 (1990), pp. 262-268.
|
|