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Abstract� This paper deals with the defect correction principle used to estimate the
error and to improve the accuracy of the numerical solution of ordinary di�erential
equations� If the basic numerical method is designed for a special type of equation
only� as is the case for many geometric integrators� a splitting approach enables the
application of the defect correction principle in this case as well� We show experi�
mental order results and �xed point properties of iterated defect correction when
applied to various geometric integration methods in this setting�

� Introduction

In recent years� the importance of using special numerical integration schemes that re�ect cer�
tain geometric properties or retain important conserved quantities of the �ow of a di�erential
equation has been widely recognized ���� Many of these methods are applicable to particular
types of di�erential equations only�

A cheap and e�cient way to estimate the global error of a numerical method used to solve
an ordinary di�erential equation 	ODE
 is the defect correction principle� The idea can also
be used to successively improve the accuracy of the numerical solution 	��� and the references
therein
� In this acceleration technique� a number of neighboring problems have to be solved�
which are not necessarily of the same type as the original problem� Therefore it may happen
that the neighboring problems cannot be solved by the same geometric integrator as the
original problem� In this paper� we present splitting methods ��� to avoid such di�culties�

� Splitting Defect Correction

First� we describe the classical version of iterated defect correction ���� Consider an initial value
problem

�z  f	t� z
� z	t�
  z�� 	�


to be solved on the interval �t�� tend�� The approximate solution z��� � 	z�� � � � � zN
 is obtained
by some discretization method � on a grid 	t�� � � � � tN 
� Denote by p���	t
 the polynomial of

���



degree N interpolating the values of z���� Using this interpolating function� we construct a
neighboring problem associated with 	�
 whose exact solution is p���	t
�

�z	t
  f	t� z	t

 � d���	t
� 	�


where d���	t
 � �p���	t
 � f	t� p���	t

� We now solve 	�
 using the same numerical method �
and obtain an approximate solution �p��� for p���	t
� This means that for the solution of the
neighboring problem 	�
 we know the global error which is a good estimate for the unknown
error of the original problem 	�
� This estimate can be used to improve the �rst solution�

z��� � z��� �
�
p��� � �p���

�
�

Now� these values are used to de�ne a new interpolating polynomial p���	t
 by requiring

p���	tj
  z
���
j � Again� p���	t
 de�nes a neighboring problem in the same manner as in 	�
�

where again the exact solution is known� and the numerical solution of this neighboring prob�
lem serves to obtain the second improved solution z��� � z��� �

�
p��� � �p���

�
� This process can

be continued iteratively� For obvious reasons one does not use one interpolating polynomial for
the whole interval �t�� tend� in practice� Instead� piecewise functions composed of polynomials
of 	moderate
 degree m are de�ned to specify the neighboring problems�

In many situations� the defect correction principle yields an asymptotically correct error
estimate and a successive improvement in the convergence orders of the respective iterates� up
to a certain limit determined by the smoothness of the problem data and the value of m�

If the basic method � is a geometric integrator� the neighboring problem 	�
 has a form to
which the integrator cannot be applied straightforwardly� For example� if the St�rmer�Verlet
method is applied to a Hamiltonian system 	see Section �
� 	�
 is no longer an autonomous�
separated system� Another example is the exponential midpoint rule designed for linear ho�
mogeneous systems�

In order to be able to use iterated defect correction even in these cases� we employ splitting
methods� cf� ���� To apply Strang splitting to 	�
� we split the time�dependent vector �eld into
its components f	t� y
 and d���	t
� We denote the numerical �ow of f	t� y
 by �t�h� such that
one step 	t� �i
 �� 	t � h� �i��
 with step size h of the basic scheme � applied to 	�
 can be
written as �i��  �t�h 	�i
� The numerical �ow �t�h of the other component d���	t
 is de�ned
by the quadrature rule

�t�h	y
  y �

Z t�h

t

D���	�
d�� 	�


where D���	t
 is a piecewise polynomial interpolant of degree � m�� of d���	t
� For the purpose
of this paper� we use interpolation at Gaussian points in certain subintervals of lengthH  mh�
The details of the procedure are given in ���� Using �t�h and �t�h� the numerical solution of
	�
 is computed using the numerical �ow

�t�h  �t�h���h�� � �t�h ��t�h��� 	�


where � denotes the composition of the numerical methods 	which means that the result
computed by one method is the starting value for the next method
� We call the method
where the solution of the neighboring problems is computed in this way iterated splitting
defect correction �ISDeC��

���



� The St�rmer�Verlet Method

The St�rmer�Verlet method is a geometric integration scheme of order two which is particularly
suited for the solution of Hamiltonian systems of ODEs like Kepler�s equations of planet motion
	�
� or more generally� separated ODEs� The method retains important conserved quantities
of the exact �ow like the angular momentum� see below�

Consider a system of two separated autonomous ODEs

�p  f	p� q
� �q  g	p� q
� 	�


One step of the St�rmer�Verlet method for 	�
 is de�ned by

qi����  qi �
h

�
g	pi� qi����
 	�


pi��  pi �
h

�

�
f	pi� qi����
 � f	pi��� qi����


�
	�


qi��  qi���� �
h

�
g	pi��� qi����
� 	�


As a numerical example for the application of this method to a Hamiltonian system of di�e�
rential equations consider the Kepler problem� i� e��

�p  �Hq	p� q
� �q  Hp	p� q
� 	�


where

H	p�� p�� q�� q�
 
�

�
	p�� � p��
�

�p
q�� � q��

� 	��


Note that the Hamiltonian H is constant along the exact �ow of the problem� Moreover� the
angular momentum L	p�� p�� q�� q�
  q�p� � q�p� is preserved�

Now� we discuss the asymptotic order of the iterates computed by ISDeC based on the
St�rmer�Verlet method� First� we remark that under certain circumstances� the ISDeC itera�
tion converges to a �xed point p�� This �xed point is a piecewise polynomial function� and from
the de�nition of �t�h it is clear that this �xed point is characterized by �p�	�j
�f	�j� p

�	�j

  ��
where �j are the points where D

��� interpolates d��� 	in our case� Gaussian points
� This means
that in this situation the ISDeC iterates converge to a collocation polynomial ����

Figure � gives the absolute errors of the respective ISDeC iterates with respect to the
�xed point at tend  ��� using the particular initial values from ��� at t  � and polynomial
degree m  �� The left diagram shows these errors on a logarithmic scale plotted against
the step size h� while the diagram on the right shows the empirical convergence orders of the
iterates� The circles � illustrate the error and the convergence order for the �xed point� i� e��
a collocation solution of order ��� The convergence orders as compared to the �xed point are
O	h�
� O	h�
� O	h�
� � � �� This corresponds to classical theory which predicts the order to
increase by two in every step if the data is su�ciently smooth ���� From the triangle inequality
it is clear that the global errors of the iterates as compared to the exact solution have orders
O	h�
� O	h�
� � � � � O	h��
� which does not increase further than the order of the �xed point�

Finally� we discuss the conservation of the angular momentum L� It is well known that both
the St�rmer�Verlet method and the �xed point of ISDeC� de�ned by collocation at Gaussian
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Obr� �� ISDeC based on St�rmer�Verlet� m  ��
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Tabu�ka �� Error in the angular momentum for ISDeC based on St�rmer�Verlet�

points� preserve this quantity exactly ���� This is not precisely the case for the ISDeC iterates�
however� Table � shows that the angular momentum is preserved up to terms of the order of
the iteration error 	as compared with the �xed point p�
�

�	� Composition Methods

The results for the St�rmer�Verlet method in Section � are encouraging� but we would also
like to be able to use higher order schemes as basic methods for ISDeC to increase the gain in
every step of the iteration� This is possible to some extent�

The Suzuki method uses the composition of �ve steps of the St�rmer�Verlet method to
de�ne a method of order � which has similarly favorable geometric properties as the original
method� see ���� If we use the resulting integrator �t�h as in 	�
� the observed order sequ�
ence is O	h�
� O	h�
� O	h�
� � � � � O	h�m
� We can modify our approach in order to obtain
O	h�
� O	h�
� O	h��
� � � �� however�

If the composition method is

�  ���� � � � � � ��k�� 	��


the ISDeC solution method for the neighboring problem 	�
 can be chosen as

�  ���� � � � � ���k�� 	��


where ��j� is a splitting method analogous to 	�
� see ���� This new approach yields favorable
results� see Figure �� Using m  �� the order sequence of the iteration error to the �xed point
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Obr� �� ISDeC based on Suzuki� m  ��

is O	h�
� O	h�
� O	h��
� � � �� Up to the order of the �xed point� which is again a collocation
solution of order ��� this is equal to the order of the global error�

Related Work � In ���� an IDeC iteration was analyzed which can be reformulated such as
to �t into the context of the above discussion� The basic method is

�t�h  �t�h���h�� � �
�

t�h���

where �� and � are the explicit and the implicit Euler methods� respectively� Consequently� �
is the implicit trapezoidal rule� ISDeC is realized as

�t�h  �t�h���h�� ��t�h � �
�

t�h���

In ��� it has been demonstrated for linear problems that the usage of Gaussian points in the
quadrature rule leads to an order sequence O	h�
� O	h�
� � � � for the iteration error� which
means that the order of the global error increases by two up to the convergence order of the
�xed point� i� e� O	h�m
� This asymptotic behavior is the same as for the geometric integrators
of this paper�


 Exponential Integrators

First� we consider the exponential midpoint rule� which is a second order method de�ned for
linear homogeneous ODEs �y  A	t
y by

�t�h	y
  exp 	hA	t � h��

 y� 	��


If ISDeC based on the exponential midpoint rule is applied to smooth problems� the same
behavior as for the St�rmer�Verlet method can be observed� Results for

A	t
 

�
� � t ���� cos	t


�t � ���t
��� cos	t
 ����t �

�
A 	��


are given in Figure �� In this case the exact �ow of the di�erential equation preserves the norm
of the solution� The solution by the exponential midpoint rule shares this property� while this

���
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Obr� �� ISDeC based on exponential midpoint rule� m  ��

conservation law is violated for the ISDeC iterates� which preserve the norm up to terms of the
order of the iteration error� Note that collocation at Gaussian points also preserves the norm
for 	��
� Unfortunately� ISDeC in conjunction with the exponential midpoint rule can only be
used successfully if smooth problems are to be solved� This can be demonstrated using the
simple test equation �y  �y� In this case the solution obtained by the exponential midpoint
rule corresponds to the exact �ow� y	t�h
  exp	�h
y	t
� Nonetheless we may formally apply
ISDeC for this problem� It turns out that for moderate values of � � C the iteration error
successively increases up to its theoretical maximum given by the �xed point ���� If� however�
the problem is non�smooth in the sense that the modulus of � is large� ISDeC fails already
for reasonable step sizes� Only if jh�j � �� the expected order sequences can be observed� In
��� we demonstrate that for �  ����i� the error of the ISDeC iterates is unacceptably large
for reasonable h� Consequently� ISDeC needs some modi�cation to become useful for error
estimation for the time�dependent Schr�dinger equation after space 	semi�
discretization� The
favorable results presented in this paper are a starting point for �nding a successful ISDeC
version for this important class of problems�
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